

Axion Dark Matter Detection in an RF Cavity

Sebastian A. R. Ellis

SLAC National Accelerator Laboratory

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Office of Science

Based on: 1912.11048 A. Berlin, R. T. D'Agnolo, P. Schuster, N. Toro, C. Nantista, J. Neilson, S. Tantawi, K. Zhou

Outline

Axion couplings to photons

Existing detection strategy overview Radio-Frequency up-conversion approach Signal Noise: Standard noise sources

Non-standard noise sources

Outlook

Axion couplings to photons

$$\mathcal{L} \supset -\frac{1}{4}g_{a\gamma\gamma}aF\tilde{F}$$

Axion couplings to photons

$$\mathcal{L} \supset -\frac{1}{4}g_{a\gamma\gamma}aF\tilde{F}$$

QCD axion inevitably has such a coupling

$$g_{a\gamma\gamma}^{\rm QCD} \simeq \frac{\alpha}{2\pi} \frac{1}{f_a} \left(\frac{E}{N} - 1.92 \right) \qquad \text{DFSZ: } \frac{E}{N} = \begin{cases} 0 & \text{neutral VLQs} \\ 2 & \pm 1 & \text{charged VLQs} \end{cases}$$

$$\text{KSVZ: } \frac{E}{N} = \begin{cases} 0 & \text{neutral VLQs} \\ 2 & \pm 1 & \text{charged VLQs} \end{cases}$$

Axion couplings to photons

$$\mathcal{L} \supset -\frac{1}{4}g_{a\gamma\gamma}aF\tilde{F}$$

QCD axion inevitably has such a coupling

$$g_{a\gamma\gamma}^{\rm QCD} \simeq \frac{\alpha}{2\pi} \frac{1}{f_a} \left(\frac{E}{N} - 1.92 \right) \qquad \text{DFSZ: } \frac{E}{N} = \begin{cases} 0 & \text{neutral VLQs} \\ 2 & \pm 1 \text{ charged VLQs} \end{cases}$$

$$\text{KSVZ: } \frac{E}{N} = \begin{cases} 0 & \text{neutral VLQs} \\ 2 & \pm 1 \text{ charged VLQs} \end{cases}$$

ALP has coupling to photons introduced "by hand"

$$g_{a\gamma\gamma}^{\mathrm{ALP}} \simeq \frac{\alpha}{2\pi f_a}$$

Axion electrodynamics: $\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F \tilde{F} = -g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a$$

$$\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J} - g_{a\gamma\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \partial_t a \right)$$
Maxwe improve

Maxwell's new and mproved Equations

Axion dark matter:
$$a(t) \simeq \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \cos(m_a t + \varphi)$$

Dark matter as a source for effective current \implies source magnetic field:

$$J_{\rm eff}(t) \sim g_{a\gamma\gamma} B_0(t) \sqrt{\rho_{\rm DM}} \cos m_a t \implies B_a(t) \propto J_{\rm eff}(t)$$

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\text{sig}}^{(\text{r})} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\text{r}}}\right) \sim \omega_{\text{sig}}^2 B_a^2 V \min\left(\frac{Q_{\text{r}}}{\omega_{\text{sig}}}, \frac{Q_a}{m_a}\right)$$
$$\frac{1}{\tau_a} \sim m_a \langle v^2 \rangle \qquad \qquad 1/\tau_{\text{r}} \sim \omega_{\text{sig}}/Q_{\text{r}} \qquad \qquad Q_a \sim 1/\langle v^2 \rangle$$

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\text{sig}}^{(\text{r})} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\text{r}}}\right) \sim \omega_{\text{sig}}^2 B_a^2 V \min\left(\frac{Q_{\text{r}}}{\omega_{\text{sig}}}, \frac{Q_a}{m_a}\right)$$
$$1/\tau_{\text{r}} \sim \omega_{\text{sig}}/Q_{\text{r}} \qquad Q_a \sim 1/\langle v^2 \rangle$$

Maximise: ω_{sig} , B_a , V

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\text{sig}}^{(\text{r})} \sim \frac{\mathcal{E}_{a}^{2}}{R} \min\left(1, \frac{\tau_{a}}{\tau_{\text{r}}}\right) \sim \omega_{\text{sig}}^{2} B_{a}^{2} V \min\left(\frac{Q_{\text{r}}}{\omega_{\text{sig}}}, \frac{Q_{a}}{m_{a}}\right)$$

$$1/\tau_{a} \sim m_{a} \langle v^{2} \rangle \qquad 1/\tau_{\text{r}} \sim \omega_{\text{sig}}/Q_{\text{r}} \qquad Q_{a} \sim 1/\langle v^{2} \rangle$$
Maximise: $\omega_{\text{sig}}, B_{a}, V$

$$\boxed{\begin{array}{c} \textcircled{Maximise:} & \omega_{\text{sig}}, B_{a}, V \\ \hline & \textbf{QUANTITIES} \\ \textbf{OFTEN LINKED} \end{array}}$$

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

ADMX and other cavities: $\omega_{sig} = m_a$ $B_a \sim J_{eff}/\omega_{sig}$ $\omega_{sig} \sim V^{-1/3}$

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

ADMX and other cavities: $\omega_{sig} = m_a$ $B_a \sim J_{eff}/\omega_{sig}$ $\omega_{sig} \sim V^{-1/3}$

Difficult to reach small axion masses — cavity has to be huge!

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

ADMX and other cavities: $\omega_{sig} = m_a$ $B_a \sim J_{eff}/\omega_{sig}$ $\omega_{sig} \sim V^{-1/3}$

Difficult to reach small axion masses — cavity has to be huge!

LC resonators:

$$\omega_{\rm sig} = m_a \quad B_a \sim J_{\rm eff} V^{1/3}$$

Axion-induce magnetic field induces an E.M.F.: $\mathcal{E}_a \sim V^{2/3} \partial_t B_a$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

ADMX and other cavities: $\omega_{sig} = m_a$ $B_a \sim J_{eff}/\omega_{sig}$ $\omega_{sig} \sim V^{-1/3}$

Difficult to reach small axion masses — cavity has to be huge!

LC resonators:

$$\omega_{\rm sig} = m_a \quad B_a \sim J_{\rm eff} V^{1/3}$$

Able to access small masses, but length-ratio suppressed

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

Heterodyne resonator:

$$\omega_{\rm sig} = \omega_0 \pm m_a \qquad B_a \sim J_{\rm eff} / \omega_{\rm sig}$$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

Heterodyne resonator:

0

$$\omega_{
m sig} = \omega_0 \pm m_a \qquad B_a$$

$$B_a \sim J_{\rm eff} / \omega_{\rm sig}$$

Gain:

$$\frac{\mathcal{E}_a^{(\text{osc.})}}{\mathcal{E}_a^{(\text{static})}} \sim \frac{\omega_0 \pm m_a}{m_a} \sim \frac{\omega_0}{m_a}$$

$$P_{\rm sig}^{\rm (r)} \sim \frac{\mathcal{E}_a^2}{R} \min\left(1, \frac{\tau_a}{\tau_{\rm r}}\right) \sim \omega_{\rm sig}^2 B_a^2 V \min(Q_{\rm r}/\omega_{\rm sig}, Q_a/m_a)$$

Heterodyne resonator:

$$\omega_{\rm sig} = \omega_0 \pm m_a$$

$$B_a \sim J_{\rm eff} / \omega_{\rm sig}$$

Gain:

$$\frac{\mathcal{E}_a^{(\text{osc.})}}{\mathcal{E}_a^{(\text{static})}} \sim \frac{\omega_0 \pm m_a}{m_a} \sim \frac{\omega_0}{m_a}$$

Noise & exp. parameters not discussed yet

Comparison

	Static-field Haloscope	LC Resonator	RF Frequency Conversion
$J_{ m eff}$	$\propto B_0^{ m static} \cos(m_a t)$	$\propto B_0^{ m static} \cos(m_a t)$	$\propto B_0^{\rm RF} \cos(\omega_0 \pm m_a) t$
\mathcal{E}_a	$\propto m_a/\omega_{ m sig} \sim 1$	$\propto m_a V^{1/3} \lesssim 1$	$\propto (\omega_0 \pm m_a)/\omega_{ m sig} \sim 1$
P_{sig}	$J_{\text{eff}}^2 V \min\left(\frac{Q_{\text{r}}}{m_a}, \frac{Q_a}{m_a}\right)$	$J_{\rm eff}^2 m_a^2 V^{5/3} \min\left(\frac{Q_{\rm LC}}{m_a}, \frac{Q_a}{m_a}\right)$	$J_{\rm eff}^2 V \min\left(\frac{Q_{\rm SRF}}{\omega_0 \pm m_a}, \frac{Q_a}{m_a}\right)$

Axion Resonant Frequency Conversion

Superconducting RF Cavity $\omega_1 \sim 2\pi \, {\rm GHz}$ $Q_{\rm int} \sim 10^9 \div 10^{13}$

Axion Resonant Frequency Conversion

Superconducting RF Cavity $\omega_1 \sim 2\pi \, {\rm GHz}$ $Q_{\rm int} \sim 10^9 \div 10^{13}$ Tunability: $\delta\omega \lesssim \, {\rm MHz} \, {\rm piezos}$

 $\delta\omega\gtrsim~{
m MHz}$ fins

Axion Signal

Signal Power Spectral Density (PSD):

$$S_{\rm sig}(\omega) = \frac{\omega_1}{Q_1} \left(g_{a\gamma\gamma} \eta_{10} B_0 \right)^2 V \frac{\omega^2}{(\omega^2 - \omega_1^2)^2 + (\omega \omega_1/Q_1)^2} \int \frac{d\omega'}{(2\pi)^2} \left(\omega' - \omega \right)^2 S_{b_0}(\omega') S_a(\omega - \omega')$$

Axion PSD:
$$\langle a(t)^2 \rangle = \frac{1}{(2\pi)^2} \int d\omega \ S_a(\omega) = \frac{\rho_{\rm DM}}{m_a^2}$$

Power for monochromatic background field:

$$P_{\rm sig} \simeq \frac{1}{4} \left(g_{a\gamma\gamma} \eta_{10} B_0 \right)^2 \rho_{\rm DM} V \times \begin{cases} Q_1/\omega_1 & \frac{m_a}{Q_a} \ll \frac{\omega_1}{Q_1} \\ \pi Q_a/m_a & \frac{m_a}{Q_a} \gg \frac{\omega_1}{Q_1} \end{cases},$$

Standard Noise Sources: Thermal Noise

Power Spectral Density:

$$S_{\rm th}(\omega) = \frac{Q_1}{Q_{\rm int}} \frac{4\pi T (\omega \,\omega_1/Q_1)^2}{(\omega^2 - \omega_1^2)^2 + (\omega \,\omega_1/Q_1)^2}$$

Non-standard Noise Sources: Phase Noise

Non-standard Noise Sources: Wall Vibrations

Non-standard Noise Sources: Field Emission

Non-standard Noise Sources

Non-standard Noise Sources

Potential Sensitivity

Outlook

Radio-Frequency up-conversion approach

 $\omega_{\rm sig} = \omega_0 \pm m_a$

Parametric gain for small axion masses vs. LC Resonator

$$\frac{\mathrm{SNR}}{\mathrm{SNR}^{\mathrm{LC}}} \sim \frac{\omega_0 \pm m_a}{m_a} \left(\frac{Q_{\mathrm{int}}}{Q_{\mathrm{LC}}}\right)^{1/2} \left(\frac{T_{\mathrm{LC}}}{T}\right)^{1/2} \left(\frac{B_0}{B_{\mathrm{LC}}}\right)^2$$

SLAC group beginning prelim. cavity studies

CERN & FNAL SRF groups voiced interest

Backup

QCD has a CP problem:

$$\mathcal{L} \supset \frac{\bar{\theta}g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

QCD has a CP problem:

$$\mathcal{L} \supset \frac{\bar{\theta}g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

Term violates CP — leads to neutron EDM $d_n \sim 10^{-16} \bar{\theta} \ e \ {\rm cm}$

QCD has a CP problem:

$$\mathcal{L} \supset \frac{\bar{\theta}g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

Term violates CP — leads to neutron EDM $d_n \sim 10^{-16} \bar{\theta} \ e \ {\rm cm}$

Experimental limit:

$$d_n^{\rm exp} \lesssim 10^{-26} \ e \ {\rm cm}$$

 $\bar{\theta} \lesssim 10^{-10}$

$$\mathcal{L} \supset \left(\frac{a}{f_a} + \bar{\theta}\right) \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

Peccei & Quinn (1977) Weinberg (1978) Wilczek (1978)

$$\mathcal{L} \supset \left(\frac{a}{f_a} + \bar{\theta}\right) \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

Peccei & Quinn (1977) Weinberg (1978) Wilczek (1978)

Potential for axion generated by confinement:

$$V = -m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \left(\frac{a}{2f_a} + \frac{\bar{\theta}}{2} \right) \right)^{1/2}$$

$$\mathcal{L} \supset \left(\frac{a}{f_a} + \bar{\theta}\right) \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

Peccei & Quinn (1977) Weinberg (1978) Wilczek (1978)

Potential for axion generated by confinement:

$$V = -m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \left(\frac{a}{2f_a} + \frac{\bar{\theta}}{2} \right) \right)^{1/2}$$

Minimised: $\langle a \rangle = -\overline{\theta} f_a$

$$\mathcal{L} \supset \left(\frac{a}{f_a} + \bar{\theta}\right) \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$$

Peccei & Quinn (1977) Weinberg (1978) Wilczek (1978)

Potential for axion generated by confinement:

$$V = -m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \left(\frac{a}{2f_a} + \frac{\bar{\theta}}{2} \right) \right)^{1/2}$$

Minimised: $\langle a \rangle = -\overline{\theta} f_a$

Axion mass related to QCD scale: $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$

Axion-like particles (ALPs)

$$\mathcal{L}_{ALP} \supset \frac{1}{2}m_a^2 a^2 + \mathcal{L}_{int}$$

Generic shift-symmetric P-odd scalar field w/ derivative couplings to SM fields

Motivations:a)One of ~few concrete predictions from known String
compactifications (string axiverse)b)ALPs as Dark Matter from misalignment
c)Svrček & Witten (2006)
Arvanitaki et al (2009)
Stott et al (2017)
Halverson & Langacker
(2018)

Axion-like particles (ALPs)

$$\mathcal{L}_{ALP} \supset \frac{1}{2}m_a^2 a^2 + \mathcal{L}_{int}$$

Generic shift-symmetric P-odd scalar field w/ derivative couplings to SM fields

Mass unrelated to QCD scale:

Motivations: a) One of ~few concrete predictions from known String compactifications (string axiverse) Svrček & Witte Arvanitaki et a

- b) ALPs as Dark Matter from misalignment
- c) Technology to search for ALPs exists

Svrček & Witten (2006) Arvanitaki et al (2009) Stott et al (2017) Halverson & Langacker (2018)

ALPs as Dark Matter: Misalignment

Axion EoM in FRW Universe: $\ddot{a} + 3H\dot{a} + m_a^2 a = 0$

$$3H > m_a, \quad a = a_0$$
$$3H \lesssim m_a, \quad a \simeq a_0 \left(\frac{\alpha(H = 3m_a)}{\alpha(t)}\right)^{3/2} \cos(m_a t + \varphi)$$

 a_0

ALPs as Dark Matter: Misalignment

Axion EoM in FRW Universe: $\ddot{a} + 3H\dot{a} + m_a^2 a = 0$

$$3H > m_a, \quad a = a_0$$

 $3H \lesssim m_a, \quad a \simeq a_0 \left(\frac{\alpha(H = 3m_a)}{\alpha(t)}\right)^{3/2} \cos(m_a t + \varphi)$

DM energy density: $\rho_{\rm DM} \sim T^3 T_{\rm eq}$

OTT .

Recall:
$$\rho_a \sim m_a^2 a_0^2$$
 $T \sim (H^2 m_P^2)^{1/4}$

ALPs as Dark Matter: Misalignment

Axion EoM in FRW Universe: $\ddot{a} + 3H\dot{a} + m_a^2 a = 0$

$$3H \lesssim m_a, \quad a \simeq a_0 \left(\frac{\alpha(H=3m_a)}{\alpha(t)}\right)^{3/2} \cos(m_a t + \varphi)$$

 $3H > m_a, \quad a = a_0$

DM energy density: $ho_{\rm DM} \sim T^3 T_{\rm eq}$

Recall: $\rho_a \sim m_a^2 a_0^2$ $T \sim (H^2 m_{\rm P}^2)^{1/4}$

Relic abundance:
$$a_0^2 = \left(\frac{T_{eq}^2 m_P^3}{m_a}\right)^{1/2}$$

$$a_0 = \theta_0 f_a$$

 a_0

Power comparison with static LC resonator

Power for monochromatic background field:

$$P_{\rm sig} \simeq \frac{1}{4} \left(g_{a\gamma\gamma} \eta_{10} B_0 \right)^2 \rho_{\rm DM} V \times \begin{cases} Q_1/\omega_1 & \frac{m_a}{Q_a} \ll \frac{\omega_1}{Q_1} \\ \pi Q_a/m_a & \frac{m_a}{Q_a} \gg \frac{\omega_1}{Q_1} \end{cases},$$

Power for LC resonator:

$$P_{\rm sig}^{\rm (LC)} \sim (g_{a\gamma\gamma} B_{\rm LC})^2 \,\rho_{\rm \scriptscriptstyle DM} \, V^{5/3} \min(Q_{\rm LC}, Q_a) \, m_a$$

Ratio:

$$\frac{P_{\text{sig}}}{P_{\text{sig}}^{(\text{LC})}} \sim \left(\frac{0.2 \text{ T}}{4 \text{ T}}\right)^2 \times \begin{cases} \left(Q_1/Q_a\right)^2 \frac{\left(\omega_1/Q_1\right)}{\left(m_a/Q_a\right)} & \frac{m_a}{Q_a} \ll \frac{\omega_1}{Q_1}\\ \left(\omega_1/m_a\right)^2 & \frac{m_a}{Q_a} \gg \frac{\omega_1}{Q_1} \end{cases}$$

Potential Sensitivity dependences $-Q_{int}$

TRIUMF, March 11th 2020

Potential Sensitivity dependences — geom. factor

Potential Sensitivity dependences — wall disp.

Potential Sensitivity dependences — wall disp.

