Microlensing with extended structures

Djuna Lize Croon (TRIUMF) New Techniques for Dark Matter Discovery March 2020 dcroon@triumf.ca | djunacroon.com

Based on arXiv:2002.08962 [astro-ph.CO] with David McKeen and Nirmal Raj

Dark matter substructure

Two things we may agree upon...

- (Unfortunately) all of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

What else can we learn from gravitational interactions?

→ Microlensing surveys constrain primordial black holes

 \rightarrow What about extended structures?

Image credit: Adam Rogers, theamateurrealist.wordpress.com

Sneak peak: substructure sensitivity

The lensing equation (point-like lenses)

• The source position β and image position θ are related by

$$\begin{split} \beta &= \theta - \alpha \\ &= \theta - \frac{4GM(\theta)}{\theta c^2} \frac{D_{\rm LS}}{D_{\rm S}} \\ &= \theta - \frac{4GM(\theta)}{\theta c^2} \frac{D_{\rm LS}}{D_{\rm S}} \\ \end{split} \qquad \begin{array}{l} \beta &= \theta \\ M(\theta) = M \\ \text{Source behind} \\ \text{a point-like lens} \\ \end{array} \\ \begin{array}{l} \theta_E &= \sqrt{\frac{4GM}{c^2} \frac{D_{\rm LS}}{D_{\rm L} D_{\rm S}}} \\ \frac{1}{c^2} \frac{$$

• $m{ heta}_E$ can be used to define a lensing tube with radius $r_E=m{ heta}_E\,D_L$

$$\begin{array}{ll} \text{Magnification:} & \mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum_{i} \mu_{i} = \frac{u^{2} + 2}{u\sqrt{u^{2} + 4}} & \text{Microlensing event is counted if } \mu > 1.34 \\ & \xrightarrow{u=1} 1.34 & u \equiv \beta/\theta_{\mathrm{E}} & \text{Impact parameter} \end{array}$$

The lensing equation (extended lenses)

- For extended lenses, μ can not always be found analytically
- Define the threshold impact parameter $u_{1.34}$:

 $\mu_{\rm tot}(u \le u_{1.34}) \ge 1.34$

All smaller impact parameters produce a magnification above $\mu > 1.34$

- As we will see, the threshold impact parameter $u_{1.34}$ depends on different properties of the lens
 - Mass profile $M(\theta)/M$
 - Characteristic size r_{90}
 - Distances in the problem

Reasonable hypothesis: dilute lenses give $u_{1.34} < 1$

Threshold impact parameter

For some lenses, as expected, the larger the lens, the smaller $u_{1.34}$

Threshold impact parameter But for others, something else happens... $\overline{\rho(r)} = \overline{\rho_0 \Theta(r_{\rm m} - r)}$ 2.0r **Uniform sphere** Numerically solve the Schrodinger-Poisson equations **Boson star** 1.5Self – similar subhalo $W_{1.34}$ 1.0**NFW** subhalo 0.5 $r^{-3/2}$ $ho(r) \propto r^{-3/2}$ 0.0L 10⁻¹ 10^{0} 10^{1} 10^{2}

 $r_{90}/r_{\rm E}(x)$

Caustics

What's going on in this plot?

Sufficiently flat density

profiles can give more or

Caustics

Consequence: the Einstein tube is not a tube; not ellipsoidal

→ Depending on the source, experiments may be more or less sensitive to extended objects compared to point sources in different locations

Constraining extended objects

The differential event rate contains all the essential physics

Constraining extended objects

The total number of expected events depends on the experiment

Obtaining constraints

To obtain limits, we have to account for the observed events

- EROS-2: 3.9 events at 90% CL
- OGLE-IV: O(1000) astrophysical events, $\kappa = 4.61$ at 90% CL

Constraints on DM fraction

Generally, constraints on extended objects are weaker...

Constraints on DM fraction

But for sufficiently flat density profiles, caustics change the constraints

To conclude,

- Many dark matter models feature substructure such as miniclusters, microhaloes, and Bose Einstein condensates
- All of our current evidence for Dark Matter is gravitational
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses

 \rightarrow Extended objects may give unique microlensing signatures

• We *will* learn more about dark matter through gravity!

Thank you!

...ask me anything you like!

dcroon@triumf.ca | djunacroon.com