Superradiant Searches for Dark Photons in Two Stage Atomic Transitions

Joseph Bramante

Queen's University McDonald Institute Perimeter Institute

Amit Bhoonah, JB, Ningqiang Song 1909.07387

Dark photons

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + m^2 A'_{\mu} A'^{\mu} - \left(A_{\mu} + \chi A'_{\mu}\right) J^{\mu}_{EM}$$

Galison, Manohar 1984 Holdom 1986

U(1) vectors mixed with the SM photon appear in many SM extensions

SUSY breaking sectors

Dienes Kolda March-Russell 1998

String compactifications

Goodsell Jaeckel Redondo Ringwald 2008

Dark sectors

Pospelov 2008 Arkani-Hamed Finkbeiner Slatyer Weiner 2008 Ackerman Buckley Carroll Kamionkowski 2008

Light Shining Through Walls

Searches for dark photons currently use cavities to detect the dark photons coming through the wall, (ALPS II).

ALPS II TDR 1302.5647

Stellar emission with longitudinal mode

Stellar emission bounds currently leading for ~meV+.

An, Pospelov, Pradler 1302.3884 Raffelt 1996

Light Shining Through Walls

ALPS II focusing on axion detection.

ALPS II TDR 1302.5647

Classic Superradiance

Superradiance describes the collective (de-)excitation of atoms that emit or absorb photons coherently.

$$\Delta k \Delta x \sim 1$$

- $V \sim rac{1}{k_1^3}$ coherence volume momentum limited
- $\Gamma = nV\Gamma_0 \qquad {\rm No} \ {\rm SR}$

$$\Gamma_{tot} = n^2 V^2 \Gamma_0 \qquad \text{SR}$$

Analogy to Spin-Independent Direct Detection: sum over emitters versus sum over nucleons in amplitude, squared.

$$\sigma \propto N^2 \sigma_n$$

Macro Superradiance

Classic superradiance is limited by the frequency of the photon emitted. Macro superradiance minimizes the momenta of emitters with back-to-back two photon emission.

Macro Superradiance

Classic superradiance is limited by the frequency of the photon emitted. Macro superradiance minimizes the momenta of emitters with back-to-back two photon emission.

pH₂'s first vibrational excitation state electric dipole (E1) transition parity forbidden, leading transition is two photon (E1xE1).

pH₂'s first vibrational excitation state electric dipole (E1) transition parity forbidden, leading transition is two photon (E1xE1).

This ~0.5 eV vibrational mode is the lowest lying state, along with easily attainable 10 ns decoherence times, this makes pH₂ a good medium for macro coherence.

\sim	$\vec{\mathbf{k}}_2$		
U			
$\rm pH_2$ Reference	Density (cm^{-3})	Temperature (K)	Decoherence Time (ns)
[57]	$10^{19} - 10^{20}$	80-500	~ 10
[42]	$5.6 imes 10^{19}$	78	$\sim 8 \; (\text{est})$
[37]	$10^{19} - 5 \times 10^{20}$	78	$\sim 10 \text{ (est)}$
[58]	$2.6 imes 10^{22}$	4.2	$\gtrsim 140$

 r_1 is the $|e\rangle$, $|g\rangle$ Bloch vector where $r_1 = 1$ defines fully coherent/in-phase atoms. Our simulations assumed 10 ns decoherence times, and varied laser detuning δ .

Bhoonah, JB, Song 2019

 r_1 is the $|e\rangle$, $|g\rangle$ Bloch vector where $r_1 = 1$ defines fully coherent/in-phase atoms. Our simulations assumed 10 ns decoherence times, and varied laser detuning δ .

-Commercially available lasers have the pulse power necessary

to excite ~mg of parahydrogen to full coherence.

-Current record is $r_1 \sim 0.068$.

Motohiko et al. 2015

Bhoonah, JB, Song 2019

Macro Coherence at Queen's University

One technical challenge is generating enough 10 ns laser pulse power — looking into new methods for simplifying 1064 -> 4806 nm conversion.

Modified search for dark photons:

Use a macro-coherent sample of parahydrogen as a target for a lightshining-through-wall laser.

- 1. Excite hydrogen to coherent state with back-to-back lasers.
- 2. Run cavity-amplified light-through-wall laser at same frequency.
- 3. Look for deexcitation of pH_2 during 10 ns coherence window.
- 4. Calibrate coherence / response of pH₂ with cavity laser off.

The transitions for multi-photon emission, in the Standard Model and with a dark photon.

The gain over traditional light-shining-through-wall regeneration cavity is that the dark photon field acts as a trigger laser for two photon emission.

Maxwell's equations with the E1xE1 transition Hamiltonian are integrated over the experimental volume to determine the power emitted in photons from the sample, start from $r_1 = 1$.

E', E₁, E₂

$$\begin{aligned} &(\partial_t - \partial_z)E_1 = \frac{i\omega n}{2} \left[\left(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2} r_3 \right) E_1 + a_{eg} (r_1 - ir_2) (E_2^* + \chi \eta E'^*) \right] \,, \\ &(\partial_t + \partial_z)E_2 = \frac{i\omega n}{2} \left[\left(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2} r_3 \right) (E_2 + \chi \eta E') + a_{eg} (r_1 - ir_2) E_1^* \right] \,, \\ &(\partial_t + \partial_z)E' = \frac{i\omega n}{2} \left[\left(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2} r_3 \right) (2\chi^2 \eta E' + \chi E_2) + a_{eg} (r_1 - ir_2) \chi \eta E_1^* \right] \,. \end{aligned}$$

Using a cavity laser comparable to ALPS I, and a pH₂ macro coherence setup similar to a lower power test run [Hiraki et al. 2018], ~10 signal photons for N_{rep} = 1000, $m_{A'}$ = 0.1 meV, χ = 10⁻⁹.

Dark Photon Generating Cavity	Superradiant Parahydrogen Target	
Cavity Length $l = 50 \text{ cm}$	Sample Length $L = 30$ cm	
Cavity Reflections $N_{\text{pass}} = 2 \times 10^4$	pH ₂ Density $n = 10^{21} \text{ cm}^{-3}$	
Cavity Laser Freq. $\omega' = 0.26 \text{ eV}$	Pump Laser Freq. $\omega_1 = 0.26 \text{ eV}$	
Cavity Laser Power $P_L = 1 \text{ W mm}^{-2}$	Pump Laser Power $\approx 10^9 \text{ W mm}^{-2}$	
_	pH_2 Sample Area $A = 1 \text{ cm}^2$	

Signal photons scale the mixing parameter (until every atom is de-excited.)

Dark Photon Generating Cavity	Superradiant Parahydrogen Target	
Cavity Length $l = 50$ cm	Sample Length $L = 30$ cm	
Cavity Reflections $N_{\text{pass}} = 2 \times 10^4$	pH ₂ Density $n = 10^{21} \text{ cm}^{-3}$	
Cavity Laser Freq. $\omega' = 0.26 \text{ eV}$	Pump Laser Freq. $\omega_1 = 0.26 \text{ eV}$	
Cavity Laser Power $P_L = 1 \text{ W mm}^{-2}$	Pump Laser Power $\approx 10^9$ W mm ⁻²	
—	pH_2 Sample Area $A = 1 \text{ cm}^2$	

There is improved reach as the number density of pH₂ increases.

There is improved reach as the number density of pH₂ increases.

The extremely nonlinear sensitivity scaling with n (also L, t) can be understood quantitatively

$$\begin{split} &(\partial_t - \partial_z)E_1 = \frac{i\omega n}{2} \left[(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2}r_3)E_1 + a_{eg}(r_1 - ir_2)(E_2^* + \chi\eta E'^*) \right] ,\\ &(\partial_t + \partial_z)E_2 = \frac{i\omega n}{2} \left[(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2}r_3)(E_2 + \chi\eta E') + a_{eg}(r_1 - ir_2)E_1^* \right] ,\\ &(\partial_t + \partial_z)E' = \frac{i\omega n}{2} \left[(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2}r_3)(2\chi^2\eta E' + \chi E_2) + a_{eg}(r_1 - ir_2)\chi\eta E_1^*) \right] \end{split}$$

condense field equations, _____ drop z, r₂, fix r₁

$$\rightarrow \qquad (\partial_t^2 - \partial_z^2)E_1 - n^2\Omega_r^2E_1 = 0 \\ E_1 \propto e^{n\Omega_r t} \\ \Omega_r \propto \omega a_{eg}r_1$$

->Exponential dependence on n, t, r1

and qualitatively

The extremely nonlinear sensitivity scaling with n (also L, t) can be understood quantitatively

$$\begin{split} &(\partial_t - \partial_z)E_1 = \frac{i\omega n}{2} \left[(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2}r_3)E_1 + a_{eg}(r_1 - ir_2)(E_2^* + \chi\eta E'^*) \right] ,\\ &(\partial_t + \partial_z)E_2 = \frac{i\omega n}{2} \left[(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2}r_3)(E_2 + \chi\eta E') + a_{eg}(r_1 - ir_2)E_1^* \right] ,\\ &(\partial_t + \partial_z)E' = \frac{i\omega n}{2} \left[(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2}r_3)(2\chi^2\eta E' + \chi E_2) + a_{eg}(r_1 - ir_2)\chi\eta E_1^*) \right] \end{split}$$

condense field equations, _____ drop z, r₂, fix r₁

$$\rightarrow \quad (\partial_t^2 - \partial_z^2) E_1 - n^2 \Omega_r^2 E_1 = 0 \\ E_1 \propto e^{n\Omega_r t} \\ \Omega_r \propto \omega a_{eg} r_1$$

->Exponential dependence on n, t, r1

and qualitatively

The extremely nonlinear sensitivity scaling with n (also L, t) can be understood quantitatively

$$\begin{split} &(\partial_t - \partial_z)E_1 = \frac{i\omega n}{2} \left[\left(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2} r_3 \right) E_1 + a_{eg}(r_1 - ir_2) (E_2^* + \chi \eta E'^*) \right] ,\\ &(\partial_t + \partial_z)E_2 = \frac{i\omega n}{2} \left[\left(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2} r_3 \right) (E_2 + \chi \eta E') + a_{eg}(r_1 - ir_2) E_1^* \right] ,\\ &(\partial_t + \partial_z)E' = \frac{i\omega n}{2} \left[\left(\frac{a_{ee} + a_{gg}}{2} + \frac{a_{ee} - a_{gg}}{2} r_3 \right) (2\chi^2 \eta E' + \chi E_2) + a_{eg}(r_1 - ir_2) \chi \eta E_1^* \right) \right] \end{split}$$

condense field equations, _____ drop z, r₂, fix r₁

$$\rightarrow \quad (\partial_t^2 - \partial_z^2) E_1 - n^2 \Omega_r^2 E_1 = 0 \\ E_1 \propto e^{n \Omega_r t} \\ \Omega_r \propto \omega a_{eq} r_1$$

->Exponential dependence on n, t, r1

and qualitatively

-Macro superradiance in parahydrogen can be used to look for weakly coupled fields -Need to develop $r_1 \sim 1$ in a pH₂ sample, recent progress towards this goal

