Searching for Dark Photon Dark Matter
with Gravitational Wave Detectors

Yue Zhao

University of Utah

Aaron Pierce, Keith Riles, Y.Z. Huaike Guo, Keith Riles, Fengwei Yang, Y.Z.
arXiv:1801.10161 [hep-ph] arXiv:190x.xxxxx [hep-ph]
Phys.Rev.Lett. 121 (2018) no.6, 061102

Internally reviewed by LIGO.
O1 data analysis is almost done!



Popular Choices:
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* Very light DM particles 100 GeV ~TeV
Axion and Dark “Photon”

102 eV ~107eV
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Both ultra-light and ultra-heavy scenarios
can be proved by GW detectors!

* Primordial Black Holes:

107 ~ 100 solar mass
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Popular Choices:
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Axion and[Dark “Photon”|— DM is an oscillating
102 eV ~ 102 eV background field.

Dark Photon is dominantly
oscillating background dark
electric field.
/
Driving displacements for
particles charged
under dark gauge group.




Ultra-light DM — Dark Photon
* Mass

W/Z bosons get masses through the Higgs mechanism.

A dark photon can also get a mass by a dark Higgs,

or through the Stueckelberg mechanism.
v

a special limit of the Higgs mechanism
unique for U(1) gauge group

 Relic abundance (non-thermal production )

Misalignment mechanism
Light scalar (moduli field) decay

Production from cosmic string (Andrew’s talk)

Ultra-light dark photon can be a good candidate of cold dark matter!



General Picture:

LIGO/LISA: advanced Michelson—Morley interferometer
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Gravitational wave =) Change photon propagation .—) interferometer pattern
changes the distance time between mirrors.
between mirrors.



General Picture:

Ultra-light DM: coherent state ) background classical radio wave

—— (not the precise pic)
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Maximal Displacement:

Local DM energy density:
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Maximal Displacement:
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dark photon coupling
dark electric field

charge mass ratio of the test object
Silicon mirror:
U(l)B: 1/GeV

U(1)B-L : 1/(2GeV)
projected along

the arm direction
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Maximal GW-like Displacement:

AL[t] = (x1[t] — x2[t]) — (y1[t] — y2]t])
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Compare this with the sensitivity on strain h. vy =0 gives same force to all
test objects, not observable.
Net effect 1s proportional to velocity.




Properties of DPDM Signals:

Signal:

* almost monochromatic
1 A

2 DM velocity dispersion.
Determined by gravitational

* very long coherence time potential of our galaxy.

—> A bump hunting search in frequency space.

Can be further refined as a detailed template search,
assuming Boltzmann distribution for DM velocity.

Once measured, we know great details of the local DM properties!



Properties of DPDM Signals:

Signal:

* very long coherent distance
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Propagation and polarization directions remain constant approximately.



Properties of DPDM Signals:

Correlation between two sites 1s important to reduce background!

\
dark photon field value

Hanford
Observatory

Due to long coherence
length, signal is almost
the same for both sites.

Livingston
Observatory



Sensitivity to DPDM signal of GW detectors:

First we estimate the sensitivity in terms of GW strain.

(Allen & Romano, Phys.Rev.D59:102001,1999)

One-sided power spectrum function:

2
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energy density carried b}’ h2) Concretely predicted by
a GW planewave pew(f) = 167C Maxwell-Boltzmann distribution!
L fdpcn\ — ] A template search .is possible,
Qew (f) = 0. df = and a better reach is expected!
Af/f =2 ~107° © We make simple estimation based

on delta function as a guideline.



Sensitivity to DPDM signal of GW detectors:

Signal-to-Noise-Ratio can be calculated as:
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overlap function
describe the correlation among sites
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optimal filter function
maximize SNR

observation time of an experiment, O(yr)

one-sided strain noise power spectra



Sensitivity to DPDM signal of GW detectors:

DPDM:

(AL;AL)
(AL%)
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Sensitivity to DPDM signal of GW detectors:

DPDM: .
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Sensitivity to DPDM signal of GW detectors:

Translate strain sensitivity to parameters of DPDM:

SNR = |f|./_
2\/P1 K Af

effectively the max differential displacement of two arms

a GW with strainh =) change of relative displacement as h

E> V <AL2> LIGO | max

> sensitivity of DPDM parameters (mass, coupling)



Sensitivity Plot:
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O1 Preliminary Result:
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Earth Rotation Effects:
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Fine structure of the signal

Analytic understanding matches very well with numerical result!



Conclusion

The applications of GW experiments can be extended!
—> Particularly sensitive to relative displacements.
Coherently oscillating DPDM generates such displacements.

It can be used as a DM direct detection experiment.

The analysis 1s straightforward!
—> Very similar to stochastic GW searches.

Better coherence between separated interferometers
than Stochastic GW BG.

The sensitivity can be extraordinary!
—> O1 data has already beaten existing experimental constraints.
Can achieve 5-sigma discovery at unexplored parameter regimes.

Once measured, great amount of DM information can be extracted!
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Sensitivity Plot:
U(l)BL charge mass ratio: 1/2GeV

my(eV)

107+

.

LIGO

EW(20)

UDp

LISA

0.01 1 100
f(Hz)
design sensitivities operating for 2 years

10-°°



LISA-like GW exp for PBH

Extreme Mass Ratio Inspirals

ABH
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SMBH gravitational

wave signal
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LISA-like GW exp for PBH

Extreme Mass Ratio Inspirals

®
o { : Suf\
SMBH gravitational
wave signal
LISA

Same frequency, but smaller amplitude!



Master Formula:
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intrinsic EMRI rate \
well studied for SMBH-ABH
rescale for PBH mass and density volume integral
truncated by SNR
SMBH mass spectrum
104 - 107 Mg
provided in astrophysics
SMBH spin distribution

likely to be almost extremal
little effects to final results



GW Strain:
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Sensitivity:

One observation may be good enough to claim discovery!
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Conclusion

LISA-like GW detectors 1s powerful to search for PBHs!

—» Large unexplored parameter space can be probed.
PBH mass: 10" ~ 10 Mg

Fraction can be as small as 10,

= One or few signal events are good enough to declare discovery,
if PBH 1s out of the mass regime of astrophysical COs.
Non-COs (planets) are destroyed by tidal force before ISCO.



Conclusion

Astrophysical uncertainties can be largely reduced by measurements
phy
on ABH-SMBH EMRIs.

Mass spectrum and spin distribution of SMBHs.

Help to remove hard cut-off at z=1.

—> Lighter SMBH may be more useful to look for smaller PBHs.
Larger Frequency Integration Regime (SNR)
Guideline in future LISA-like GW experiments

LIGO opens the era of GW astronomy. (Similar to the time when CMB is observed.)

Plenty astrophysics can be studied, as well as non-SM physics.



Dark Matter Overview: * Bullet Cluster (Deep Chandra)

Why do we need DM?

 Galaxy rotation curve (Wikipedia)
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