Gas clouds as dark matter detectors

Joe Bramante McDonald Institute, Queen's University, Perimeter Institute

Work with Amit Bhoonah, Fatemeh Elahi, Sarah Schon

Expanding the search for dark matter

Xenon1T 2018

Detecting MeV-TeV mass strongly interacting DM

The earth and atmosphere block detection of strongly-interacting dark matter

dark matter kinetic energy < recoil threshold The earth and atmosphere block detection of strongly-interacting dark matter

Galactic center gas clouds: new calorimetric detectors

Galactic center gas clouds: new calorimetric detectors

Н

21 cm

For 10-100 K gas clouds cooling results from electrons and hydrogen colliding with ions, and subsequent atomic de-excitation.

Cooling rate $\propto n_{\rm H}^2 \sigma \sqrt{T/m}$

Collisions are rarer at lower temperatures.

→ Therefore, as the cloud cools, the cooling rate decreases.

Cooling decreases with gas cloud temperature.

If dark matter predominantly heats the gas cloud, the cloud will not cool below some temperature.

Calibration

Simple models of gas cloud cooling match emission line measurements of gas clouds near earth.

volumetric cooling rate Log[erg/s/cm³]

Metallicity Gas cloud cooling increases with gas metallicity

Cooling rate
$$\propto n_H n_C \sigma \sqrt{T/m}$$

(for T~10-1000 K)

Metallicity definitions

 $Log_{10}[C \times n_{Fe}/n_{H}] \equiv [Fe/H]$

 $[Fe/H] \equiv 0$, solar

Better Calibration

Use gas cooling code to model Galactic Center Gas Clouds

Better Calibration

Use gas cooling code to model Galactic Center Gas Clouds

	\bar{T}	radius	$\bar{ ho}$	Z/Z_{\odot}	grains	UV	CR	$ar{n}_{e}$	ave. cooling
Model	[K]	[pc]	$[\mathrm{cm}^{-3}]$				$[s^{-1}]$	$[\mathrm{cm}^{-3}]$	$[\mathrm{erg}\mathrm{cm}^{-3}\mathrm{s}^{-1}]$
C1-22	22	8.2	0.29	1	no	0.1	1×10^{-18}	2.3×10^{-4}	1.9×10^{-29}
C2-22	22	8.2	0.29	0.1	no	1.9×10^{-3}	1.9×10^{-19}	9.7×10^{-5}	$1.6 imes 10^{-30}$
C3-22	22	8.2	0.29	5	no	0.1	5×10^{-18}	5.6×10^{-4}	6.2×10^{-28}
C1-137	137	12.9	0.421	1	yes	1	$5 imes 10^{-17}$	1×10^{-3}	$3.4 imes 10^{-28}$
C2-137	137	12.9	0.421	0.1	yes	1	$3 imes 10^{-18}$	$5 imes 10^{-4}$	8.2×10^{-29}
C3-137	137	12.9	0.421	5	yes	1	1.9×10^{-16}	6.2×10^{-3}	6.1×10^{-27}
C1-198	198	12.3	1.57	1	yes	1	2.9×10^{-16}	$1.2 imes 10^{-2}$	2.4×10^{-26}
C2-198	198	12.3	1.57	0.1	yes	1	1.1×10^{-16}	7.4×10^{-3}	8.2×10^{-27}
C3-198	198	12.3	1.57	5	yes	1	1.4×10^{-15}	4.5×10^{-2}	1.5×10^{-25}

Better Calibration

High Z Implies High C/Fe/e

Use gas cooling code to model Galactic Center Gas Clouds

DM	\bar{T}	radius	$\bar{ ho}$	Z/Z_{\odot}	grains	UV	CR	\bar{n}_e	ave. cooling
Model	[K]	[pc]	$[\mathrm{cm}^{-3}]$				$[s^{-1}]$	$[\mathrm{cm}^{-3}]$	$[\mathrm{erg}\mathrm{cm}^{-3}\mathrm{s}^{-1}]$
C1-22	22	8.2	0.29	1	no	0.1	1×10^{-18}	$2.3 imes 10^{-4}$	1.9×10^{-29}
C2-22	22	8.2	0.29	0.1	no	1.9×10^{-3}	1.9×10^{-19}	$9.7 imes 10^{-5}$	1.6×10^{-30}
C3-22	22	8.2	0.29	5	no	0.1	5×10^{-18}	$5.6 imes 10^{-4}$	6.2×10^{-28}
C1-137	137	12.9	0.421	1	yes	1	$5 imes 10^{-17}$	1×10^{-3}	3.4×10^{-28}
C2-137	137	12.9	0.421	0.1	yes	1	3×10^{-18}	$5 imes 10^{-4}$	8.2×10^{-29}
C3-137	137	12.9	0.421	5	yes	1	1.9×10^{-16}	$6.2 imes 10^{-3}$	6.1×10^{-27}
C1-198	198	12.3	1.57	1	yes	1	2.9×10^{-16}	1.2×10^{-2}	2.4×10^{-26}
C2-198	198	12.3	1.57	0.1	yes	1	1.1×10^{-16}	7.4×10^{-3}	8.2×10^{-27}
C3-198	198	12.3	1.57	5	yes	1	1.4×10^{-15}	4.5×10^{-2}	1.5×10^{-25}

Increasing metallicity increases cooling,

but also increases iron density (nuclear scattering)

and free electron density (electron scattering & dark photon heating)

Green Banks Telescope detection of galactic center gas clouds using 21 cm emission

Gas clouds found within ~kpc of the Galactic Center

Gas Cloud 1.4-1.8+87

(assume spherical cloud)

Dark matter interactions heat gas clouds

Conservatively: assume all heating by DM

Conservatively: assume all heating by DM

In reality: cosmic rays

DM + UV background

photoelectric heating

There are known ubiquitous heating sources, like cosmic UV background, cosmic rays, dust grain heating (see upcoming work).

Gas Cloud Detection of Dark Matter

Ultra Light Dark Photon Dark Matter х scatters & heat $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + m^2 A'_{\mu} A'^{\mu} - \frac{e}{(1+\epsilon)^2} \left(A_{\mu} + \epsilon A'_{\mu} \right) J^{\mu}_{EM}$ $\gamma_{h} = \begin{cases} -\frac{\nu}{2} \left(\frac{m}{\omega_{p}}\right)^{2} \frac{\epsilon^{2}}{1+\epsilon^{2}}, & m \ll \omega_{p} \\ -\frac{\nu}{2} \left(\frac{\omega_{p}}{m}\right)^{2} \frac{\epsilon^{2}}{1+\epsilon^{2}}, & m \gg \omega_{p}, & \text{Dubovsky et al 2015} \end{cases}$

Gas Cloud Bounds on Fuzzy Dark Photons

Millicharged dark matter

 $\mathcal{L} = \mathcal{L}_{\rm SM} + |D_{\mu}\Phi|^2 - V(\Phi) - \frac{1}{4} F'^2_{\mu\nu} + \epsilon A'_{\mu}\partial_{\nu}F^{\mu\nu} + \bar{X}(iD_{\mu}\gamma_{\mu} - m_X)X$

for $m_{A'} \ll q$, effectively ϵ -charged DM

MDM deposits most energy into free electrons in cloud

Bethe
$$\frac{dE}{dx} = \frac{2\pi n_{\rm e}\epsilon^2 \alpha_{\rm em}^2}{m_{\rm e}v_{\rm x}^2} \left(\ln \left[\frac{2\mu_{\rm ex}^2 v_{\rm x}^2/m_{\rm e}}{\lambda_d^{-2}/(2m_{\rm e})} \right] - v_{\rm x}^2 \right)$$

Debye screening

 $\lambda_{\rm d} = \sqrt{T_{\rm g}}/(4\pi\alpha_{\rm em}n_{\rm e})$

Millicharged dark matter

[Fe/H] proof

Metallicity leaves bound nearly unchanged because higher metallicity increases heating linearly by increasing free electron number density.

Vector Portal Dark Matter

Mediator with a mass.

Dark matter nucleon scattering (strongly interacting, composite, super heavy)

 $DHR \approx n_{\rm x} \sigma_{\rm Nx} v_{\rm x} E_{\rm nr}$

overburden

has most of its kinetic energy when it reaches the center

Dark matter nucleon scattering - low mass

Dark matter nucleon scattering

Summary

Galactic center gas clouds are useful dark matter detectors

10-22 - 10-10 eV mass dark photon dark matter

Millicharged dark matter, less screened by galactic magnetic fields

> Sub-GeV Mediator Mass Vector Portal dark matter

Dark matter nucleon scattering for 0.01-10⁶⁰ GeV mass dark matter

Gas cloud locations

Gas cloud cooling, some atomic abundances

Milky Way Magnetic Field Screening of Millicharged DM

Magnetic fields screen charged dark matter from entering disk.

Chuzhoy, Kolb 0809.0436

Irregularities let some mDM through

McDermott, Yu, Zurek 1011.2907

$$\epsilon > 5 \times 10^{-13} (m_{\rm x}/{\rm GeV})$$
 screened

Milky Way Magnetic Field Screening of Millicharged DM

Magnetic fields screen charged dark matter from entering disk.

Chuzhoy, Kolb 0809.0436

Irregularities let some mDM through

McDermott, Yu, Zurek 1011.2907

 $\epsilon > 5 \times 10^{-13} (m_{\rm x}/{\rm GeV})$ screened

However: above 100 parsecs in the galactic center, magnetic fields won't screen halo dark matter

B ~ microgauss

